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Three-dimensional (3D) transport within geophysical vortices (e.g. ocean eddies) is important in under-
standing processes at a variety of scales, ranging from plankton production to climate variability. 3D
transport can be affected by hydrodynamic instabilities of geophysical vortices; however, how the insta-
bilities affecting 3D transport is not clear. Focusing on barotropic, inertial and 3D instabilities, we inves-
tigate the joint impacts of instabilities on 3D transport by using analytical methods and direct numerical
simulations. We discover for the first time that material can be exchanged through 3D pathways which
link a family of vortices generated by the instabilities in a single, initially unstable vortex. We also show
that instabilities can increase the magnitude of vertical velocity, mixing rate and vertical material
exchange. Besides, we find that instabilities can cause the kinetic energy wavenumber spectrum to have
a power-law regime different than the classic regimes of k> and k3, and propose a new energy spec-
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trum to interpret the non-classic regime.
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1. Introduction

The three-dimensional (3D) transport in geophysical vortices
(e.g. ocean eddies) is crucial in understanding biological primary
productions, air-sea gas exchanges, global tracer budgets, ocean
general circulation, and thereby, climate variability (e.g. Benitez-
Nelson et al., 2007; Chelton et al.,, 2007; McGillicuddy et al.,
2007; Small et al., 2008; Klein and Lapeyre, 2009; Viebahn and
Eden, 2010; Siegel et al., 2011; Lévy et al., 2012; Mahadevan
et al., 2012). The 3D transport can be affected by hydrodynamic
instabilities of geophysical vortices, such as barotropic and inertial
instabilities; however, how these instabilities affecting the 3D
transport is not clear.

Barotropic instability in geophysical vortices has been exten-
sively observed in laboratory experiments (e.g. Greenspan, 1969;
Kloosterziel and van Heijst, 1991; Carnevale and Kloosterziel,
1994; Flor and van, 1996), from satellite/radar images (e.g.
Pingree and Le Cann, 1992; Stapleton et al., 2002; Kossin and
Schubert, 2004; Montgomery et al., 2006), and by numerical
simulations (e.g. Carton et al, 1989; Carton and McWilliams,
1989; Orlandi and van, 1992; Kloosterziel and Carnevale, 1999;
Schubert et al., 1999; Nolan and Montgomery, 2001). Barotropic
instability receives well-known necessary conditions derived in
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inviscid parallel shear flows, including Rayleigh inflection-point
criterion (Rayleigh, 1880), Rayleigh-Kuo inflection-point criterion
(Kuo, 1949) and Fjertoft’s criterion (Fjertoft, 1950).

Centrifugal instability was explored in an inviscid swirling flow
by Rayleigh (1917) who derived a necessary condition, known as
Rayleigh circulation criterion. Later when studying inviscid flows
between coaxial cylinders, Synge (1933) pointed out that the Ray-
leigh circulation criterion is also a sufficient condition if perturba-
tions are axisymmetric. When background rotation is considered,
centrifugal instability is regarded as inertial instability. Inertial
instability can form vertically-stacked overturning cells of selective
scales (e.g. Dunkerton, 1982; Hua et al., 1997; Afanasyev and
Peltier, 1998; Orlandi and Carnevale, 1999; Bourlés et al., 2003;
Griffiths, 2003; Kloosterziel and Carnevale, 2008), homogenize
absolute linear/angular momentum (e.g. Griffiths, 2003;
Kloosterziel et al., 2007; Kloosterziel et al., 2007; Carnevale et al.,
2013), and affect mixing of biogeochemical tracers (e.g. Richards
and Banks, 2002; Richards and Edwards, 2003; d’Orgeville et al.,
2004).

The Rayleigh circulation criterion is, however, invalid for non-
axisymmetric perturbations, and still no general stability criterion
is achieved (Drazin and Reid, 2004). Non-axisymmetric perturba-
tions of swirling flows (or asymmetric perturbations of parallel
flows) can draw energy from background flows and lead to non-ax-
isymmetric inertial instability (or asymmetric inertial instability).
Here the “non-axisymmetric” (or “asymmetric”’) means that the
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swirling (or parallel) flow is not uniform in the azimuthal (or
along-flow) direction; we refer to the non-axisymmetric (or asym-
metric) inertial instability as 3D instability. Further, from the per-
spective of normal-mode analysis, this 3D instability can be viewed
as the combination of barotropic and inertial instabilities. Regard-
ing the growth rate of 3D instability, there is an unsolved argument
on whether the non-axisymmetric/asymmetric perturbations can
own higher growth rates than that of the axisymmetric/symmetric
ones (e.g. Gallaire and Chomaz, 2003; Billant and Gallaire, 2005;
Bouchut et al., 2011; Ribstein et al., 2014).

The literature contains many studies on the onset of hydrody-
namic instabilities, but less studies on the long-term impacts of
instabilities on 3D transport. In fact, some studies have explored
3D transport within geophysical vortices, for instance, Fountain
et al. (2000), Branicki and Kirwan (2010) and Pratt et al. (2014);
however, these studies ignored instabilities, which may even break
the vortices. Indeed, as stated by Lipphardt et al. (2008) while
studying loop current rings in the Gulf of Mexico, these rings
may fall apart due to instabilities, leading to material leakage.

In addition, the dynamical systems approach has been adopted
to study the transport in unsteady flows by the introduction of the
concept of Lagrangian coherent structures (LCS), which are actually
a set of special material curves/surfaces, acting as transport
barriers (e.g. Aref, 1984; Ottino, 1989; Haller and Yuan, 2000;
Haller, 2001; Mezi¢, 2001; Wiggins, 2005; Sameloson and
Wiggins, 2006; Sturman et al., 2006; Aref et al., 2014). However,
most geophysical LCS studies are restricted to two-dimensional
(2D) flows, the result of which may not be applied to realistic 3D
geophysical vortices under certain situations.

Hence, in order to better understand the material transport
within geophysical vortices in the real world, at least two key fac-
tors need to be addressed, i.e. hydrodynamic instabilities and 3D
flow structures. In the absence of density stratification, geophysical
vortices are subject to three common types of hydrodynamic insta-
bility, i.e. barotropic, inertial and 3D instabilities. In this study, we
investigate the joint impacts of these instabilities on 3D transport
in geophysical vortices by using analytical methods and direct
numerical simulations.

The paper is organized as follows. In Section 2, we outline the
configurations of numerical experiments. In Section 3, we analyze
barotropic, inertial and 3D instabilities using normal-mode
method, and reproduce the characteristics of these instabilities
via numerical simulations. The impacts of instabilities on 3D trans-
port are presented in Section 4, and are discussed in Section 5.
Finally, we conclude this study in Section 6.

2. Numerical model

Numerical simulations are used to study how instabilities
develop and affect 3D transport in geophysical vortices. The
simulations are performed by NEK5000 which is a Navier-Stokes
(N-S) solver based on the spectral element method (e.g. Patera,
1984; Maday et al., 1990; Fischer, 1997). NEK5000 has been used
for investigating oceanic phenomena, including gravity currents,
mixed-layer instabilities (e.g. Ozgokmen et al., 2007; Ozgdkmen
et al.,, 2011) and, in a more relevant study to the present one, chao-
tic advection in an ocean eddy (Pratt et al., 2014). NEK5000 is
adopted here for several reasons. First, its geometrical flexibility
allows for a cylindrical domain that is natural for vortices. Second,
it uses third-order semi-implicit time stepping and has high-order
accuracy through spectral expansions. Last, NEK5000 can solve the
3D N-S equations without any ad hoc parameterizations. In con-
trast, many ocean general circulation models are subject to the
hydrostatic approximation, in which a reduced form of the vertical
momentum equation is used and vertical advection of tracers is

complicated because of the vertical coordinate system incorporat-
ed in these models (Chassignet et al., 2006). Also, many ocean
models contain various parameterizations, particularly near the
surface of the ocean; for instance, KPP (Large et al., 1994) mixing
scheme is a popular parameterization suite. Here we compromise
with realism by adopting an idealized flow configuration (i.e.
homogeneous density and isolation from the ambient flow), but
benefit from a systematic study of this highly resolved 3D, non-hy-
drostatic flow.

NEK5000 is configured to solve the following dimensionless
equations of motion (1):

%Hu.v)u: —Vp —Ro 'k x u+Re”' Vu, (1a)

V.ou=0. (1b)

In this system, the key parameters are Rossby number and Reynolds
number. The Rossby number is Ro = U/(fL), where U and L are char-
acteristic horizontal velocity and length scales, and f = 2Q is the
Coriolis parameter with Q being the angular velocity of the system
rotating about its vertical axis. The Reynolds number is Re = UL/v,

where v is the kinematic viscosity. k is the unit vector in the vertical
direction. Based on parameter sensitivity tests, we use fixed

Re = 10*, which is large enough to permit the emergence of hydro-
dynamic instabilities without posing major challenges to capturing
all degrees of freedom in the flow by the model resolution. In addi-
tion to Eq. (1), a passive scalar (tracer) C is used to visualize trans-
port pathways, which requires the solution of:

2—f+ (u-V)C =Pe 'V°C, (2)
where Pe = UL/x is the Péclet number and k is the diffusivity of
passive scalar.

The numerical domain (Fig. 1) is a cylinder with diameter D = 4
and height H = 1, and is discretized into 640 elements with more
grid points at boundaries to better resolve thin boundary layers.
Solutions on each element are represented by Legendre polynomi-
als of order N = 15 (total 2,621,440 grid points). The domain is full
of homogeneous fluid and rotates about its central axis at an angu-
lar velocity of Q. At time =0, a barotropic vortex is initialized in
the center of the domain. The boundary conditions are free-slip
on the sidewall, no-slip on the bottom, and prescribed velocity
(Dirichlet) on the top. This Dirichlet boundary condition mimics
a rotating disk which sustains the flow; the prescribed velocity
has the same azimuthal profile with the initial vortex. As explained
by Pratt et al. (2014), when a top and/or bottom Ekman layer has
developed in a vortex, a secondary circulation will be created, driv-
ing a 3D overturning transport within the vortex.

To highlight the impacts of instabilities, we conduct two series
of experiment listed in Table 1; one is called the target experiment
in which the initial vortex is given by Eq. (3a), while the other is
the control experiment in which the initial vortex is defined by
Eq. (3b), shown in Fig. 2,

V(r) =2rexp(-12r®), (3a)

V(r) =3.3rexp(-2r%). (3b)

Both initial vortices are cyclonic with a core of positive vorticity and
an annulus of negative vorticity outside the core, also known as the
shielded vortex. The no-slip boundary condition at the bottom will
interrupt the initial vortex, introducing perturbations into flows.
With proper parameters (Ro, Re), the vortex in the target experi-
ment supports the growth of perturbations to develop instabilities,
whereas the vortex in the control experiment forbids instabilities.
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Fig. 1. The cylindrical domain of numerical experiments.

Table 1

List of the target (T) and control (C) experiments. Note that the initial vortex in the
target experiment T4 is anticyclonic, denoted by “—Eq. (3a)”; that is, its flow direction
is opposite to that of the flow given by Eq. (3a).

Experiment Initial vortex profile Ro Re

T1 Eq. (3a) 0.2 104
T2 Eq. (3a) 0.04 104
T3 Eq. (3a) 1 10*
T4 — Eq. (3a) 1 10*
C1 Eq. (3b) 0.2 10*

The numerical model is integrated with a dimensionless time
step of 107 for a total integration time of 500. For the experiments
listed in Table 1, the flow’s kinetic energy reaches quasi-equilibri-
um around a integration time of 200. Furthermore, convergence
checks are performed in domains of a higher resolution with poly-
nomial order N = 25 (total 11,248,640 grid points) and a lower
resolution with N = 11 (total 1,105,920 grid points). The numerical
convergence is confirmed by the convergence of kinetic energy
(Fig. 3).

It is worth mentioning that from the point of view of numerical
configurations, the primary differences between our study and the
one by Pratt et al. (2014) are the Reynolds number and initial velo-
city profile. In the regime of low Re < 0(10?), Pratt et al. (2014)
carefully investigated 3D transport inside a stable eddy. Another
difference is that the initial vortex in our study is far away from
domain sidewalls in order to weaken boundary effects.

3. Analysis of instabilities

Before studying the impact of instabilities on 3D transport, we
present some backgrounds, such as the onset conditions, growth
rates and appearance features, on these instabilities in the context
of swirling flows. This helps recognize these instabilities if they
appear in the numerical simulations.

3.1. Barotropic instability

Consider a circular-symmetric, inviscid vortex defined in a
cylindrical coordinates (r,0,z). Its velocity components in the

radial (r), azimuthal (0) and vertical/axial (z) direction are denoted
by u, v,w, respectively. We analyze its barotropic instability on
an f-plane using the linearized equation of quasi-geostrophic
potential vorticity in shallow water systems, i.e.

D 2.1 201\ _ / J 27 27

op (VW = 29') = —u' (V2 = 229), @
with deformation radius 2! and streamfunction y(r, 0, t) = y/(r)+
W' (r,0,t), where y(r) is the basic-state streamfunction and
Y'(r,0,t) represents small-amplitude perturbations. Define the
perturbation of radial velocity w = -122 basic-state angular
velocity @(r) = »/r, Laplacian operator V> =1 [% (rd) +rgz7] and
o = (G + 7 5)-

Seek normal-mode
W(1,0,t) = (r)eiMm=o0 where m is azimuthal wavenumber and
o = 0, +i0; is complex frequency. Substituting it into Eq. (4) and
manipulating the equations, we obtain (cf. Appendix A)

af/ %7<VZJ] _ )MZIZ/) r2y? |dr=0. (5)

lo — m@)|?

solution in the form of

Since growth rate g; # 0, the integral in Eq. (5) must be zero, yield-
ing the necessary condition for barotropic instability; that is, the
radial gradient of basic-state potential vorticity, i.e. & (V>§ — /),
changes sign at least once within the domain. This condition
recovers Rayleigh inflection-point criterion, if deformation radius
is infinite (1 = 0).

To calculate growth rates, we choose piecewise-constant
vorticity model (e.g. Michalke and Timme, 1967; Flierl, 1988;
Schubert et al.,, 1999; Terwey and Montgomery, 2002) as the
basic-state relative vorticity, i.e.

G+8G O<r<m,
U =Vamr ={0 (n<r<r), (6)
0 (r <1< 00),

where {1, {,,r; and r, are constants. This vorticity model is discon-
tinuous at inner radius r; and outer radius r,, and thus can generate
edge waves to cause instability when they interact with each other
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Fig. 2. (a) Initial velocity profiles of the control and target experiments. Initial vorticity fields at mid-depth horizontal plane in (b) the target experiment and (c) the control

experiment.
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Fig. 3. An example of the numerical convergence check (from the target experiment T1). N is the order of Legendre polynomials for numerical solutions.

(Vallis, 2006). The normalized growth rate 4; is defined as (cf.
Appendix A),

L g; 71 1 1 2 : 2

G gm-(3-on - ea) s, 7
where 6 =1, /r, and € = —{,/{;. Gi1,Gx and G, are given by

Gy = In(ar)Kn(2ry),  (1,j=1,2), (8)

where I,(x) and K, (x) are modified Bessel functions of the first and
second kind. As indicated by Fig. 4, the growth rate J; changes
significantly with different length ratio F = /r, which represents

the ratio of flow horizontal length scale to Rossby deformation
radius.

Besides, an example of barotropic instability shown in Fig. 5
demonstrates that azimuthal wavenumber m = 2 (wavenumber-
2) instability can produce two satellite vortices (of negative vor-
ticity), while wavenumber-1 instability distorts one of the satellite
vortices by shifting the central vortex towards it.

3.2. Inertial instability

Consider a vortex with a basic-state swirling flow [0, 7(r), 0]
which is in gradient wind balance and in hydrostatic balance. We
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Fig. 4. Contours of normalized growth rates in § — ¢ space for different azimuthal wavenumber m and length ratio F; left column: m = 1, right column: m = 2,3,4; (a, b)
F=0.5,(c,d) F=1, (e, f) F = 2. Closed regions have nonzero growth rate; contours in the right column depict level 0.001.

analyze its inertial instability on an f-plane in cylindrical coordi-
nates using normal-mode method. Assume that the flow is axisym-
metric (£ = 0), inviscid and homogeneous, and that perturbation is
W'(r,z,t) = §(r)e@ittika) where g; is growth rate and k is vertical
wavenumber. A new formula of growth rate ¢; is defined as
(c¢f. Appendix B)

)
o= | — n=1,2,3,..), 9
i T i ( ) 9)

where ® = (2@ +f)(Z+f)
= v/r, vertical

with basic-state angular velocity

vorticity Z:%@ and Coriolis parameter

:
2

fium = (xg‘)/R) , where x{" is the nth zero-crossing of Bessel func-

tion J; (x) of the first kind with order one and R is vortex radius.

According to Eq. (9), for fixed vertical wavenumber k, growth rate
of mode n=1 is the largest, since the zero-crossings of Bessel

function increase monotonically, ie. xJ""" > x” > 0. In addition,

the growth rate increases with increasing wavenumber k; as
k — oo, the growth rate o; reaches its upper limit (—®)"/2. Hence,
the maximum growth rate that inertial instability can gain is
(—=®pmin) /%, where @y, is the minimum of @ (if ® < 0).

Inertial instability requires ® < 0 in Eq. (9), at least for one
point in the domain, i.e.

Qo+ +f) <0, (10)

which is identical to the result obtained by Kloosterziel and van
Heijst (1991) using particle-instability method. In terms of Eq.
(10), we can qualitatively discuss the effect of background rotation
on the inertial instability in a vortex. When f > 0, a cyclonic vortex
has @ > 0; then background rotation (f) tries to keep both terms
(2w +f) and ({ +f) to be positive, suppressing inertial instability
to stabilize the cyclonic vortex. For an anticyclonic vortex (@ < 0),
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Fig. 5. Vertical vorticity at mid-depth horizontal plane from the target experiment
T2, showing the asymmetric effect of azimuthal wavenumber-1 instability that
shifts the central vortex off center, towards one of the two satellite vortices.

however, background rotation may stabilize or destabilize the flow
depending on the micro Rossby number which is defined as
Ro; = |(|/f. If Ro; < 1, the two terms, (2@ + f) and ({ +f), tend to
be positive, since f is dominant; therefore background rotation
has stabilizing effect in this case. If Ro; > 1 then background rota-
tion has little effect on vortex stability. If Ro; ~ O(1), the above
two terms are both about zero and may easily have opposite signs
somewhere, causing ® <0 and triggering inertial instability.
Indeed, vigorous inertial instability in anticyclonic vortices with
Ro; ~ O(1) has been widely reported (e.g. Lesieur et al., 1991;
Afanasyev and Peltier, 1998; Orlandi and Carnevale, 1999). In brief,
background rotation has different stabilization effects on cyclonic
and anticyclonic vortices, also known as selective stabilization.

Additionally, an example of inertial instability shown in Fig. 6
manifests that inertial instability can create toroidal/rib vortices
that collapse later, causing vortex breaking.

3.3. Three-dimensional instability

Barotropic and inertial instabilities are essentially 2D, since
flows in the analysis presented in Sections 3.1 and 3.2 are always
uniform in one direction (the vertical or azimuthal). In fact, geo-
physical vortices may simultaneously undergo barotropic and iner-
tial instabilities, allowing perturbations in all three directions and
leading to 3D instability. Consider a vortex with a basic-state velo-
city [0, o(r), 0] which is in gradient wind balance and in hydrostatic
balance. We analyze its stability on an f-plane in cylindrical coor-
dinates using normal-mode method. By assuming that perturba-
tions w'(r, 0,z,t) = 4(r)eim+k=-9t where m and k is azimuthal and
vertical wavenumber, and ¢ = o, + ig; is complex frequency, a
new formula of growth rate g; is given by (cf. Appendix C)

oK)’y

0= &t (mjn)? } , (m,k #0), (11)

where ® = 2o +f)((+f) and n=®/(2d +f) with basic-state
angular velocity @ = v/r, vertical vorticity Z:}@ and Coriolis
parameter f. We compute the growth rate for the vortex given by
Eq. (3a), with r = 0.752 and n = 0.113 being used in Eq. (11). This
growth rate shown in Fig. 7 is similar to that of Billant and

Fig. 6. The generation of toroidal/rib vortices by inertial instability from the target
experiment T4, visualized by the isosurface of vertical vorticity equal to —1 at (a)
time = 0 and (b) time = 8.

Gallaire (2005) who computed the growth rate using the large-
axial-wavenumber WKB approximation.

In terms of Eq. (11), we can qualitatively discuss the problem on
whether the non-axisymmetric/asymmetric perturbations can
have higher growth rates than that of the axisymmetric/symmetric
ones. In cyclonic vortices, since 7 satisfies the relation of
0 < 5 < 1/2, the growth rate in Eq. (11) is less than (—®)"/? which
is the maximum growth rate for inertial instability or for axisym-

growth rate

wavenumber-k

Fig. 7. Growth rates of 3D instability for different azimuthal and vertical
wavenumber pairs (m, k).
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Fig. 8. The helical structure of 3D instability from the target experiment T1,

visualized by the isosurface of vertical vorticity equal to 1.

metric perturbations (m = 0). That is to say, in cyclonic vortices,
axisymmetric perturbations own the highest growth rate.
Nonetheless in anticyclonic vortices, if —@® <f < -2, then

1 > 1; thus growth rate Eq. (11) is larger than (—®)~"/2. In other
words, for anticyclonic vortices with proper #, non-axisymmetric
perturbations (m # 0) can have a larger growth rate than the
axisymmetric counterparts.

Further based on the growth rate in Eq. (11), we can analyze the
necessary condition for the 3D instability. If taking f > 0O, then for
cyclonic vortices (@ > 0) we have 5 > 0; thus it requires ® < 0 at
least for one point in the domain in order to get nonzero g;. But
for anticyclonic vortices (@ < 0), ® < 0 is not necessary to launch
instability because of the uncertainty of the sign of #. For example,
if # <0 and ® > 0, nonzero growth rate can still exist for proper

wavenumber pairs (m,k) that satisfy [kz + (m/r)zn] < 0. Hence

with background rotation, anticyclonic vortices are more vul-
nerable to instability than the cyclonic counterparts, since anticy-
clonic vortices may undergo 3D instability when either ® < 0 or
® > 0.

In addition to the above necessary condition, Appendix C gives
another one, which is d{/dr changing sign somewhere. Conse-
quently, the 3D instability in cyclonic vortices owns two necessary
conditions which are actually the necessary conditions for
barotropic and inertial instabilities, respectively. This is not sur-
prising since our stability analysis treats the 3D instability as the

1.25 2.50

Fig. 9. Vertical vorticity field at mid-depth horizontal plane in the target experiment T1 at (a) time = 17 (b) time = 19 (c) time = 65 and (d) time = 195.
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combination of barotropic and inertial instabilities. In fact, in order
to combine the two kinds of instability, it requires that background
flows favor both instabilities and that their growth rates are
comparable.

As stated by Gallaire and Chomaz (2003), the 3D instability pro-
duces helical structures, each of which is associated with a specific
wavenumber pair (m # 0,k # 0). Indeed, an example of 3D insta-
bility shown in Fig. 8 exhibits such a helical structure related to
the wavenumber pair (m =2,k =1).

4. Joint impacts of instabilities on transport
4.1. Evolution of an unstable vortex

In the context of the background presented in Section 3, we can
now identify these instabilities developed in the vortex. Take the
target experiment T1 as an example. At the beginning, the vortex
undergoes weak inertial instability that generates short-living, ver-
tically stacked overturning cells. Then barotropic instability devel-
ops the azimuthal wavenumber-4 mode (Fig. 9a) that quickly
grows into nonlinear phase, creating four satellite vortices sur-
rounding the central vortex (Fig. 9b). Through the vortex merging
mechanism which states that two same-signed vorticity regions
can merge into one vortex (Melander et al., 1988), the four satellite
vortices merges into two larger ones. As the merging proceeds, the
central vortex undergoes horizontal stretching (Fig. 9c). Next by
the vortex axisymmetrization mechanism which expresses that a
vortex relaxes towards axisymmetry as a result of filament gen-
eration (Melander et al., 1987), the stretched central vortex rolls
up and bonds with the two satellite vortices via spiral vorticity fila-
ments, forming tripolar vortices (Fig. 9d). The entire pattern of the
tripolar vortices rotates together and remains coherent till the end
of simulation. Additionally, the 3D tripolar vortices (Fig. 10b)
demonstrate the helical structures produced by 3D instability.
The helical structure of the central vortex has a reversed winding
direction, compared with that of the satellite vortices owing to
their opposite-sign vorticity.

Barotropic, inertial and 3D instabilities are all observed in the
above example; accordingly, the impacts of instabilities to be pre-
sented below are actually produced by the joint actions of these
instabilities.

4.2. Overturning transport by the secondary circulation

In order to visualize pathways of the overturning transport, we
inject a small, low-diffusivity tracer blob within the mid-depth
vortex core at the beginning, and track its evolution.

In the control experiment C1, the vertical velocity field is
upward within the vortex core and downward outside the core,
developing an annulus of downwelling (Fig. 11a). Thus, intuitively,
tracer is transported upward within the vortex core (Fig. 12b).
After arriving at the surface, tracer uniformly spreads out of the
core and enters into the downwelling annulus (Fig. 12c¢). Then
the downwelling carries tracer downward, completing the over-
turning transport (Fig. 12d). The above process is further illustrated
via streamlines shown in Fig. 14a. The streamline spirals up in the
upwelling core and gets into the downwelling annulus where it
spirals down.

In the target experiment T1, instabilities create small, weak
downwelling zones settling in the vortex core (Fig. 11b), but the
upwelling is dominant within the core. Thus, similar to the control
experiment C1, the tracer goes upward at the beginning; then it is
horizontally stretched (Fig. 13b) as the vortex core is suffering
stretch (c¢f. Fig. 9c). Next due to vortex axisymmetrization, the
stretched tracer rolls up, creating spiral filaments (Fig. 13c¢). Tails

(b)

Fig. 10. 3D structures of vortices, visualized by the isosurface of vertical vorticity,
correspond to the vortex shown in (a) Fig. 9b and (b) Fig. 9d.

of the spiral filaments are cut off later and stay at domain corners,
being nearly motionless, as shown on Fig. 13d-f. After reaching the
surface, the tracer disperses out of the central vortex and gets
attracted into two surrounding satellite vortices (Fig. 13d), within
which tracer continues moving down. During the downward
motion, the tracer is gradually shaped into two 3D “funnel” struc-
tures (Fig. 13e) that are confined inside the satellite vortices. When
the funnels touch the bottom, the tracer spirals inward and then is
carried up by the dominant upwelling inside the central vortex
(Fig. 13f). Hereafter, the tracer circulates among the central and
satellite vortices and completes the overturning transport. This
3D circulation is also demonstrated by streamlines shown in
Fig. 14b. The two sets of streamline are parallel to each other inside
the central vortex, but diverge into different satellite vortices after
leaving the central vortex.

During the tracer transport, the tracer around edges of vortices
quickly diffuses and mixes, implying that vigorous flow stirring
(rapid stretching and folding of fluid elements) exists around
edges. The finite-time Lyapunov exponent (FTLE) is adopted to test
this implication. Briefly, FTLE is the exponential rate of dispersion
between particles initially close to each other, after particles being
advected by ambient flows for finite time (e.g. Shadden et al., 2005;
Haller and Yuan, 2000). The larger FTLE represents the faster parti-
cle dispersion and also means the stronger flow stirring. Indeed, as
shown in Fig. 15a, the extremes of FTLE occupy the regions around
vortices edges, confirming the vigorous flow stirring around edges.
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Fig. 11. (a, b) Vertical velocity fields and (c, d) horizontal velocity vectors at mid-depth horizontal plane at time = 195; color denotes the magnitude of velocity; left column:

the control experiment C1; right column: the target experiment T1.

Additionally, vigorous flow stirring accompanies with strong strain
rate that can be identified from Okubo-Weiss (OW) field shown in
Fig. 15b. The definition of OW is OW = Sl2 — 2, with the horizontal
strain rate S=[(u— vy)*+ (vx+1y)’)’ and vertical vorticity
{ = vx — u, in Cartesian coordinates. Therefore, positive OW indi-
cates strong strain rate, which appears around the edges of vortices
according to Fig. 15b, particularly at the rear end of the major axis
of central elliptic vortex.

Furthermore, we investigate the root mean square (RMS) of ver-
tical velocity that reflects the flow’s overall ability of vertical
motions and overturning transport. In the control experiment C1,
vertical velocity manifests decaying oscillations in the early adjust-
ment stage and then gradually reaches an equilibrium (Fig. 16).
Similarly in the target experiment T1, decaying oscillations appear
at the beginning (cf. Fig. 16). Afterwards (time >15), instabilities
start to grow and increase the magnitude of vertical velocity; how-
ever, the magnitude decreases later (60 < time < 110) and then is
re-elevated to a quasi-steady state at which the magnitude is twice
as much as that of the control experiment C1. On the whole, insta-
bilities increase the magnitude of vertical velocity and therefore
enhance the overturning transport. The enhanced overturning
transport can be verified by comparing the location of tracer blobs
in the control and target experiments. Tracer blob in the target
experiment T1 has already arrived at the bottom before time = 399
(cf. Fig. 13f); while in the control experiment C1, tracer blob is still
on the way to bottom at time = 399 (cf. Fig. 12d).

4.3. Rates of the vertical exchange and mixing

Now we fill up the entire domain with a low-diffusivity

(Pe = 10°) tracer, the initial distribution of which is uniform in
the horizontal direction and is linearly stratified in the vertical
direction, ie. C(z2) =1 -z

By defining the rate of vertical exchange and the rate of mixing,
we can quantify the instabilities impacts. The rate of vertical
exchange is estimated by the vertical gradient of vertical tracer
flux, i.e. #(wC)/dz (of dimension [C][T~']) where w is vertical velo-
city and C denotes tracer field. In the control experiment C1, large
absolute gradients are located within the vortex core and down-
welling annulus (Fig. 17), which are the zones of rapid vertical
exchange. In the target experiment T1, however, large absolute
gradients occupy the edges of vortices, rather than the core, as well
as the spiral filaments (cf. Fig. 17). This implies that instabilities
create rapid vertical exchange regions concentrated along the vor-
tex edges. Besides, according to Fig. 17, the vertical exchange rate
in the target experiment T1 is one order of magnitude higher than
that in the control experiment C1.

The rate of mixing is defined as I'(t) = ‘ﬁ log [%]
and C(to) represent domain-averaged tracer field at time t and to,
and At =t —to. During the early period of instability growth
(Fig. 18a), the mixing rate increases by (I'tar — I'con)/I'con = 140%

(with Ty =14x10"* in the target experiment and

, where C(t)
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Ton = 5.8 x 107 in the control experiment). The increase of mix-
ing rate is contributed by the larger tracer gradient that is con-
firmed by the RMS gradient of tracer field shown in Fig. 18b.
Since the mixing rate is also depend on tracer diffusivity, we
inject tracers with different diffusivities, namely Pe = 10* and
Pe=10° to examine the dependence. Indeed, as shown in
Fig. 19, the mixing rate changes strikingly with tracer diffusivity;
for example, in the early period of instability growth, the mixing
rate increase by 40% for the higher-diffusivity tracer (with
Teon = 5.0 x 107* and ',y = 7.0 x 107*) and by 1100% for the low-
er-diffusivity tracer (with I'e;p = 5.8 x 107 and [y = 7.0 x 107°).

4.4. A new thinking on the energy transfer

The kinetic energy wavenumber spectrum is used to check the
energy transfer, and is computed as follows: sample the velocity
field along the azimuthal direction which is the periodic direction
of the cylindrical domain, calculate the energy spectrum, and then
average the spectrum over different depths in the fluid interior.

For both the control and target experiments, the initial vortices
are purely axisymmetric, which theoretically means the initial flow
contains the only mode of azimuthal wavenumber-0; hence, ener-
gy has the only peak at wavenumber-0 and is almost zero at other

(d)

Fig. 12. Tracer evolution in the control experiment C1, visualized by the tracer
isosurface of 0.0006 at (a) time = 0 (b) time = 76 (c) time = 95 and (d) time = 399. A
particle trajectory is imposed on (b)-(d) with the blue sphere denoting the initial
position of the particle. (Readers may refer to the animation at http://youtu.be/
qm7i0bVv41s.)

wavenumbers. The vortex in the control experiment C1 is stable
and stays axisymmetric throughout the simulation, and thus it is
not surprising that the final-state energy spectrum shown in
Fig. 20a has almost identical shape to the initial, but with reduced
energy level due to dissipation. The fact that final-state energy
remains small at nonzero wavenumbers indicates that energy is

S
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Fig. 13. Tracer evolution in the target experiment T1, visualized by the tracer
isosurface of 0.0006 at (a) time =0 (b) time =65 (c) time =90 (d) time =116 (e)
time = 256 and (f) time = 399. Similar to Fig. 12, a particle trajectory is imposed on
(b)-(f), too. (Readers may refer to the animation at http://youtu.be/Z]YpLcSLGSc.)
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directly dissipated by friction acting on large scales through non-
local interactions (Vallis, 2006), without being cascaded into iner-
tial ranges of energy spectrum.

On the other hand, instabilities developed in the target experi-
ment change the flow into non-axisymmetric by generating distur-
bances of nonzero azimuthal wavenumbers, and increase energy at
nonzero wavenumbers. Consequently, instabilities boost local non-
linear interactions, generating a broader wavenumber spectrum.
We find that the final-state energy spectrum has a wavenumber

power of k™®? at the inertial range for the target experiment T1

(Fig. 20b) and of k~/® for the target experiment T3 (Fig. 21).
We propose a heuristic explanation for the above mentioned

non-classic power-law regimes of k™** and k™7/*. Assume that
through local nonlinear interactions, the quantity being transferred
within the inertial range is E'~*Z* where E is kinetic energy, Z is
enstrophy and « measures the isotropy of turbulence at different
wavenumbers. Postulate o € [0,1] with « =0 implying fully 3D
isotropic turbulence and o = 1 indicating purely 2D turbulence.
Therefore, the change of o from 0 to 1 represents the transition
of turbulence from 3D to 2D; that is, o bridges the gap between
3D and 2D turbulence. Denoting ¢ as the transfer rate of E'"*Z%,

(b)

Fig. 14. Streamlines over a horizontal slice of the vertical vorticity field at mid
depth in (a) the control experiment C1 and (b) the target experiment T1 at
time = 195. Two sets of streamline are coloured by white and black. Positive
(negative) vorticity is coloured by red (blue). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

and using dimensional analysis, we obtain the kinetic energy
spectrum

E(k) o &k )3, (12)

When o = 0, the above spectrum recovers the energy-downscale-
cascade regime (k™) of fully-developed, homogeneous, isotropic
3D turbulence, predicted by Kolmogorov (1941) who assumed the
spectrum depends only on the energy transfer rate and wavenum-
ber. When o =1, it recovers the enstrophy-downscale-cascade
regime (k~3) of purely 2D turbulence, predicted by Kraichnan
(1967) who supposed the spectrum relies only on the enstrophy
transfer rate and wavenumber. Moreover, when « = 3/4 and 1/2,
it explains the power-law regime of k™*? and k™" observed in
Figs. 20b and 21, respectively. Further, analogous to the definitions
of energy flux (k) and enstrophy flux Y(k) across wavenumber k,
ie.

(k) = /k Tk, (13a)

Y(k) = /k TR T dK, (13b)

where T(k') represents the rate of energy transfer owing to nonlin-
ear interactions (Boffetta and Ecke, 2012), we can define the flux of
E'"*Z*, denoted by A(k), as

Ak) = /k TR T dK . (14)
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Fig. 15. (a) FTLE field at mid-depth horizontal plane in the target experiment T1 at
time = 195, with trajectories of 1,283,202 particles being integrated for a period of
80 (forward-in-time). (b) Okubo-Weiss field at mid-depth horizontal plane in the
target experiment T1 at time = 195.
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5. Discussion
5.1. Linear instability analysis of geophysical vortices

The analysis of barotropic instability showed that wavenumber-
1 instability is neutral in purely 2D flows (Schubert et al., 1999;
Terwey and Montgomery, 2002). Nonetheless, laboratory experi-
ments (Smith and Rosenbluth, 1990) and numerical simulations
(Nolan and Montgomery, 2000) showed that wavenumber-1 insta-
bility has algebraic growth rate; later by numerical simulations,
Nolan and Montgomery (2001) pointed out that wavenumber-1

instability may become exponentially unstable in a shallow-water
system. In this study, we prove that wavenumber-1 instability can
exponentially grow in shallow-water systems. Moreover, the
unstable zones of wavenumber-1 instability change remarkably
with Rossby radius of deformation; however, other wavenumber-
m (m = 2,3,4,...) instabilities only alter a little (cf. Fig. 4). There-
fore, wavenumber-1 instability is quite sensitive to the deforma-
tion radius, agreeing with the result of Flierl (1988).
Wavenumber-1 instability introduces geometrical asymmetry
into flows by shifting the vortex core out of the symmetric center
(cf. Fig. 5). This kind of asymmetry is also observed in laboratory
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Fig. 16. Evolution of the RMS vertical velocity in the control experiment C1 and target experiment T1.
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Fig. 17. Vertical gradients of the vertical tracer flux across mid-depth horizontal plane at (a, b) time = 65 and (c, d) time = 195; left column: the control experiment C1; right

column: the target experiment T1.
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experiment (van de Konijnengerg et al., 1999, their Fig. 5) and is
identified from the reflectivity map of hurricane’s inner core (e.g.
Reasor et al., 2000). Further, wavenumber-1 instability is claimed
to be related with the trochoidal motions of hurricane tracks
(Nolan and Montgomery, 2001). Analogously in ocean eddies that
undergo wavenumber-1 instability, we expect that the asymmetry
can be observed, for example, in ocean color images by the aid of
high-resolution remote sensing technology. Also, tracks of these
eddies may exhibit the wobbling motions like the hurricane tracks.

In the analysis of inertial instability (cf. Section 3.2), we discuss
the selective stabilization which now is used to interpret the vor-
ticity skewness of submesoscale turbulence. According to ship-
based surveys, vorticity skewness of oceanic submesoscale turbu-
lence is positive (towards cyclonic) in the upper ocean mixed layer
and decreases to zero below the mixed layer (Shcherbina et al.,
2013). Based on the selective stabilization, submesoscale anticy-
clonic vortices (of characteristic Ro ~ O(1)) are vulnerable to iner-
tial instability under the Earth’s rotation, whereas cyclonic vortices
tends to be stabilized by the Earth’s rotation, causing vorticity
skewness towards cyclonic. Below the upper ocean mixed layer,
strong density stratification prohibits inertial instability
(Kloosterziel et al., 2007), and consequently anticyclonic vortices
survive. Hence below the mixed layer, oceanic environments do
not prefer to stabilize cyclonic or anticyclonic vortices; in other
words, the vorticity skewness is about zero.

In analyzing the 3D instability which is the combination of
barotropic and inertial instabilities from the perspective of nor-
mal-mode analysis, we define a new formula of growth rate. In
terms of this formula, a new insight is delivered to the argument
on whether the non-axisymmetric/asymmetric perturbations can

0.01 T T T T

possess higher growth rates than that of the axisymmetric/sym-
metric ones. It was argued in swirling flows that axisymmetric per-
turbations own the highest growth rate at large axial/vertical
wavenumbers by Gallaire and Chomaz (2003) using the direct
numerical simulation of linear impulse response and by Billant
and Gallaire (2005) using WKB approximation. In a jet flow study,
Griffiths (2008) argued a similar conclusion which is symmetric
perturbations possessing the highest growth rate at large vertical
wavenumbers, by means of Rayleigh-Schrodinger perturbation
analysis. In contrast, the opposite result was claimed in the study
of the Bickley jet’s stability; that is, asymmetric perturbations have
the highest growth rate at a certain range of vertical wavenumbers
(Bouchut et al., 2011; Ribstein et al., 2014). Here we suggest that
the above problem should be considered separately in the context
of cyclonic and anticyclonic vortices (cf. Section 3.3), at least in
swirling flows. Hence, our conclusion is divided into two situa-
tions, i.e. cyclonic and anticyclonic vortices. In cyclonic vortices,
axisymmetric perturbations own the highest growth rate; and in
anticyclonic vortices, with the proper combination of angular velo-
city @ and Coriolis parameter f that makes @/(2@® + f) > 1, non-
axisymmetric perturbations can have a larger growth rate.

5.2. Nonlinear evolution and transport in geophysical vortices

During the vortex evolution, we find that tracer fields tend to
exhibit patterns similar to the underlying vorticity fields. For
instance, temperature and pressure fields shown in Fig. 22 resem-
ble the corresponding vorticity field shown in Fig. 9d. In fact, mea-
suring vorticity can be quite challenging for ocean observations,
while the remote sensing can readily provide estimates of the
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Fig. 18. (a) Evolution of the domain-averaged tracer field with mixing rate I" being labelled; (b) evolution of the RMS gradient of tracer fields. The period of instability growth

is labelled.
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Fig. 19. Evolution of the domain-averaged tracer field with mixing rate I" being labelled for the (a) higher diffusivity, Pe = 10* and (b) lower diffusivity, Pe = 10°. The period

of instability growth is labelled. (Note the different scaling of the panels.)

sea surface temperature (SST), sea surface height, chlorophyll, etc.
Therefore, the pattern similarity between the vorticity field and
tracer field (e.g. SST and chlorophyll) is a useful property that can
help identify the united system of central and satellite vortices in
the ocean. Observational examples of these united vortices were
given by Pingree and Le Cann (1992, their Fig. 2) in SST and by
Stapleton et al. (2002, their Fig. 2) in chlorophyll.

The tracer motion in the stable vortex (cf. Fig. 12) depicts a tra-
ditional picture of the secondary circulation within a cyclonic
ocean eddy; that is, water is uplifted in the eddy core and is pushed
down at the eddy edges. If ambient surface currents exist as is in
the oceanic environments, some of the uplifted water from the
eddy core might be entrained into and carried away by these sur-
face currents. Previous studies mainly focus on the upwelling
branch of this secondary circulation. One reason is that the upwel-
ling brings nutrients into euphotic zones for plankton growth,
whereas the downwelling does not excite much ecosystem respon-
se (e.g. Mizobata et al., 2002; McGillicuddy et al., 2007; Klein and
Lapeyre, 2009). Here our results demonstrate some interesting fea-
tures of the downwelling as a result of instabilities. For example,

the downwelling shifts into the satellite eddies that are generated
around the original eddy edges by instabilities. Subsequently,
unexpected 3D pathways of transport, e.g. the funnels shown in
Fig. 13e, are created, replacing the former downwelling annulus
that is regarded as a traditional transport pathway.

Further, thinking of the material belt defined by Haller and
Beron-Vera (2013) in a 2D black-hole vortex as the boundary that
prevents material from leaking out of the vortex, we conclude that
such material belts may also exist in the interior of 3D vortex, since
material exchange between the central and satellite vortices actu-
ally take place near the 3D vortex surface and bottom, not in the
interior (cf. Figs. 13e, f and 14b). Consequently, instabilities break
the material belts near the 3D vortex surface and bottom, create
new pathways of material exchange between the central and satel-
lite vortices, and translate the exchange immediately into 3D
regime. In this way, a family of vortices operate together in order
to complete the 3D secondary circulation within this system. To
our knowledge, it is the first time that this kind of cooperation
among vortices has been discovered. Although previous studies
found satellite vortices created by instabilities (e.g. Kloosterziel
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Fig. 20. Kinetic energy wavenumber spectrum at the initial and final state of the
flow in (a) the control experiment C1 and (b) the target experiment T1.

and van Heijst, 1991; Carnevale and Kloosterziel, 1994; Schubert
et al., 1999), the 2D kinematics and dynamics, rather than the 3D
circulation, were the major concern. Besides, in order to observe
a complete 3D overturning transport, the family of central and
satellite vortices has to remain coherent for 10 or more eddy turn-
over time in our experiment. In extending the results of idealized

numerical experiments to oceanic situations, the main implication
is the possibility of the existence of such complex 3D pathways for
material exchange among eddies in close proximity. Indeed, such
family of eddies has been captured by satellite images (e.g. Pingree
and Le Cann 1992; Stapleton et al. 2002) and hopefully in the
future, we can track the material exchange in these eddy families
to verify this 3D pathways of transport.

The RMS vertical velocity can measure the overall ability of
overturning transport by the secondary circulation. As a whole,
instabilities increase the magnitude of vertical velocity; however,
at a certain stage of instability growth, e.g. 60 < time < 110 in the
target experiment T1 shown in Fig. 16, the magnitude is reduced.
In fact, at this stage vortex is suffering stretching (cf. Fig. 9c), which
greatly depresses the upwelling in the central vortex core, causing
the magnitude of vertical velocity to decrease. After the tripolar
vortices have formed, the upwelling is recovered and instabilities
are saturated. Hence, the magnitude of vertical velocity increases
again and reaches a quasi-steady state.

Some field observations showed that strong vertical exchanges
appear around the edges of mesoscale and submesoscale eddies,
other than within the cores. This phenomenon has been explained
by resorting to the presence of frontal instability along the periph-
ery of eddies (e.g. Strass, 1992; Lima et al., 2002; Mizobata et al.,
2002; Lapeyre and Klein, 2006; Capet et al., 2008; Klein and
Lapeyre, 2009). Yet, our target experiments with homogeneous-
density fluid show that without density stratification (thus no
frontal instability), large rates of vertical exchange still exist
around edges (cf. Figs. 17b and d). This result indicates that the
instabilities can also create strong vertical exchanges around
edges, in addition to the frontal instability.

As for mixing, we find that instabilities increase mixing rates,
particularly for low-diffusivity tracers. This finding is reasonable
since instabilities contribute to vigorous flow stirring that favors
the generation of tracer filaments. The filaments amplify the gradi-
ent of tracer field (c¢f. Fig. 18b, during the period of instability
growth). Large gradients of tracer field then accelerate the tracer
mixing. Thus, throughout the above successive process, we can
conclude that instabilities increase mixing rates. In addition, the
filaments generation is of special importance to low-diffusivity
tracers for mixing, unlike high-diffusivity tracers that can quickly
mix, even without filaments generation, owing to their high mole-
cular diffusion. Therefore, instabilities are more important for the
mixing of low-diffusivity tracers than high-diffusivity tracers. In
oceanic environments, heat diffusivity is two orders of magnitude
higher than salinity diffusivity; therefore, we infer that instabilities
increase salinity mixing more efficiently than heat mixing.
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Fig. 21. Kinetic energy wavenumber spectrum at the final state of the flow in the target experiment T3.
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Fig. 22. (a) Temperature field and (b) pressure field at the surface in the target
experiment T1 at time = 195.

We observe non-classic power-law regimes of energy spectrum
(e.g. k®? and k™7?); in order to interpret the non-classic regimes,
we propose a new spectrum of E(k) oc &3k~ ***)3 by assuming
the quantity of E'"*Z* being transferred between scales (with E
and Z being energy and enstrophy). In addition, another non-classic

power-law regime of k2 was discovered in laboratory rotating tur-
bulence (Baroud et al., 2002) and in oceanic submesoscale turbu-
lence (Capet et al., 2008; Shcherbina et al, 2013). In our
proposed spectrum, the k> gives o = 1/4, implying that oceanic
submesoscale turbulence is neither fully 3D (o = 0) nor purely
2D (o = 1). Moreover, a special case is o = 1/2 such that E'/2Z"/?
may be interpreted as helicity (velocity-vorticity-correlations);
that is, helicity is transferred between scales. Indeed, it was
claimed that helicity cascade can lead to the non-classic power-
law regime in rotating turbulence (e.g. Brissaud et al., 1973;
Bershadskii et al, 1993; Chakrabortty, 2007; Mininni and
Pouquet, 2009).

Furthermore, for the turbulence governed by N-S equations
under stochastic power-law forcing, the renormalization group
(RG) theory predicts an energy spectrum similar to our proposed

one. The RG spectrum is given by E(k) < k'~*“?, where € is the
power of the forcing spectrum (e.g. Fournier and Frisch, 1983;
Yakhot and Orszag., 1986; Smith and Woodruff, 1998). If € is
replaced by (o + 2), then the wavenumber power in RG spectrum
is identical to that in our spectrum.

The present study contains several obvious simplifications that
are introduced in order to deduce clear results and make this an
incremental step towards investigation of the complex structure
of real-world ocean eddies. Of particular interest for further studies
are two factors, the effects of density stratification and small aspect
ratios, that can create a significant anisotropy (in terms of horizon-
tal and vertical velocities and circulation time scales) in the sys-
tem, as well as generating new phenomena, such as internal
gravity waves and frontal instabilities. The aspect ratio used here
is relevant to the eddies in the upper ocean mixed layer and shal-
low coastal waters; however, smaller aspect ratios that are more
realistic for deep-water oceanic environments also need to be pur-
sued. In fact, in the rotating and stratified oceanic environment,
quasi-geophysical flows tend to exhibit aspect ratios of order

f/Ny (~ 1072, with N, being the buoyancy frequency).
6. Conclusion

Using the normal-mode analysis, we provide new formulas of
the growth rate of barotropic, inertial and 3D instabilities in geo-
physical vortices. Based on these formulas, some questions can
be (partially) answered, such as the exponential growth of the
wavenumber-1 barotropic instability, vorticity skewness of ocean-
ic submesoscale turbulences, and growth rate of non-axisymmet-
ric/asymmetric perturbations in 3D instability.

Through direct numerical simulations, we investigate the joint
impacts of hydrodynamic instabilities on 3D transport in geo-
physical vortices. We discover for the first time that material circu-
lates within a family of vortices created by instabilities of a single,
initially unstable vortex. This material circulation is accomplished
by 3D pathways that connect the central and satellite vortices as a
united system. Our finding implies the trap of biogeochemical trac-
ers (e.g. nutrients) inside the ocean eddies in close proximity. Addi-
tionally, we propose a new Kkinetic energy wavenumber spectrum
to interpret the non-classic power-law regimes (such as k2, k7"
and k®7?), by introducing a parameter that bridges the gap
between fully 3D turbulence and purely 2D turbulence. In other
words, our energy spectrum can represent the 3D-2D transition
in rotating turbulence.
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Appendix A. Barotropic instability analysis

Substituting normal-mode solution, y/'(r, 0, t) = (r)ei™-9 into
Eq. (4), we obtain

| d( dy 25

(0 —md) {rdr (rdr> —may

dZ 2..2\7 _
+(mraf/1 ar>w_0, (A1)
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where @(r) = #/r is angular velocity and {(r) = V?y is the vertical
component of relative vorticity of basic-state flow.
Multiply Eq. (A.1) by ¢ and integrate over domain with the con-

dition ¢ = 0 at domain boundaries. Taking imaginary part of the
above integral and assuming ¢ — ma # 0, we get

Lo .

. / <‘”7'2r21//2>dr_0, (A2)
|0 —mo)|

with

dZ 25 d 27 27

a*/l —a(v V= 25). (A.3)

Next we choose the piecewise-constant vorticity model given by Eq.
(6) as the basic-state relative vorticity to calculate growth rates. As
stated by Smyth and McWilliams (1998), each unstable mode owns
at least one critical radius r. at which phase speed is equal to the
basic-state angular velocity (o, — ma = 0), i.e. Doppler-shift fre-
quency vanishes. Critical radius could be anywhere in the domain;
thus we can simplify Eq. (A.1) to (for r # ry,17)
27 Y 2

%+%3—f—(f+f—2)v/:0, (A4)
which is the modified Bessel equation of order m. Since y(r) is
bounded as r — 0 and r — oo, and is continuous at r; and r,, we
write the general solution of Eq. (A.4) as

U(r) = 1By (r) + 2By (1), (A5)
where y; and y, are constants. B'(r) and B (r) are defined as
In(ANKm(Ar) (0< 1<),
BY(r) = { " A6
= U Gr)Kn(ir) (1 <7 < 00), (A62)
I (21)Km(dr2) (0 <71 <12),
(2) _ m
B (1) = {Im(zrz)Km(xr) (r; <1< ), (A.6b)

where I',(x) and K, (x) are modified Bessel functions of the first and
second kind.

Then substitute solution (A.5) into the jump condition which is
derived by integrating Eq. (A.1) across interface r; and r», yielding

(Gfm@1+milcn m(; Gy )(‘P]): <0)
0 — M@, + MGy ) \ Yy 0)’

m{, Gy
(A7)
where @1, @,, G11, Gy and Gy, are given by
w;=o(n) (i=1,2), (A.8a)
Gij = In(Ar)Kn (i) (1,j=1,2). (A.8b)

The determinant of coefficient matrix of Eq. (A.7) must be zero for
nontrivial ¢, and y,, and we obtain the dispersion relation

(7:%(01 +O'2):t%\/(0'1 —02)° +4m2( 5,6, (A.9)
where ; = m@, — m{;Gy; and 0, = m@, — m{,G,, are frequencies
of non-interacting edge waves living at the interfaces r = rq, . This
dispersion relation is essentially identical to that of Flier]l (1988, his
Eq. (3.4)) who used a different method (contour dynamics method).
Instability requires that ¢ has nonzero imaginary part, yielding the
necessary condition, ie. (;{;, <0, for the piecewise-constant
vorticity model given by Eq. (6). If deformation radius approaches
infinity, we have the following equations

limGy; = [imGyy = - imG, — (M) L a10
imGn =55, Mee =5, limGo = (2] 55 (A10)

Substituting equations (A.10) into Eq. (A.9), we recover the disper-
sion relation which was derived by Schubert et al. (1999, their Eq.
(2.10)) and Terwey and Montgomery (2002, their Eq. (8)) for purely
2D vortex flows. Furthermore, by defining § = r;/r; and &€ = —{,/(;,
and dividing the imaginary part of ¢ in Eq. (A.9) by |{;|, we get the
normalized growth rate

.0 1

; 1 1 2
i |€]| Zm\/—<2—G11 —552—8G22> —486%2.

Appendix B. Inertial instability analysis

(A11)

The linearized governing equations are (primes denoting
perturbations)

88—7;/ ’%+y7w+fu’:7 (B.1b)
58":':_%%7 (B.1¢)
%8(51;’) 5;;”:0_ (B.1d)

Using Egs. (B.1a)-(B.1c), we obtain the equation of perturbation
vorticity in azimuthal direction (o) = & — 2% je.

oz ar

2 .,y /
8w0+q)87u7

= =0 (B.2)

where ® = 2@ +f)({+f) with basic-state vertical vorticity
{ =147 angular velocity @ = #/r and Coriolis parameter f. Next,

r
— 10()
—r o

Substituting the normal-mode solution, v/'(r,z,t) = y(r)e(@t+ik?)
where ¢; is growth rate and k is vertical wavenumber, we can
rewrite Eq. (B.2) as

dy 1dy

1\ -
gt ()0 (B3)

we introduce streamfunction v/ and express u' = f%,w

where pt = kK’ (~®/a? — 1) and 67 # 0. For simplicity, u is assumed
to be constant and then Eq. (B.3) can be treated as Bessel, Cauchy-
Euler or modified Bessel differential equation for x>0, =0 or

U < 0, respectively. Physically, y(r) is bounded as r— 0 and
r — oo, which will be satisfied only when u > 0. Therefore, Eq.
(B.3) becomes Bessel equation of order one and its solution is

¥(r) = T () = Gy (VAr),
where Cis a constant and J, (x) is Bessel function of the first kind of
order one. Denote the nth zero-crossing of J, (x) by xJ". With bound-

ary condition /(R) = 0, i.e. ], (v/AR) = 0, where R is vortex radius, we
obtain the eigenvalue u and growth rate o; of mode n,

m\ 2
m _ (X0 w_ [ =
u ( R > . 0; 1+,u(">/k2’ (n=1,2,3,...) (B.4)

Appendix C. Three-dimensional instability analysis

The linearized governing equations are (primes denoting
perturbations)
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aa—z;,+u/%+z:%+if+ﬁl/:_%%_gv (C.1b)

Manipulating Egs. (C.1a)-(C.1c) to eliminate variable p’, we get
equations for the azimuthal and radial component of perturbation
vorticity. Assume normal-mode solutions (v, ', w') = [u(r), (),
w(r)]eimo+kz=at) “where m and k is wavenumber in the azimuthal
and vertical direction, and ¢ = o, + ig; is complex frequency. Sub-
stitute solutions into the new equations as well as Eq. (C.1d), apply
the critical-radius relation, i.e. ¢, — mé@ = 0, mentioned in Appendix
A, and take the imaginary parts, yielding

okl — (Q + f) ki+ 2™y o, (C2a)
r rr

= N N m .

(C+fku+ oikv — Oi-W= 0, (C.2b)

? b+ kw=0. (C.20)

The determinant of Eqs. (C.2) must be zero for nontrivial solution,
giving growth rate

2 2
o= | oK AT ko), (C3)

k* + (m/r)
Then using Eqgs. (C.1a) and (C.1b), we get the equation for the verti-
cal perturbation vorticity. Substituting normal-mode solutions into
the new equation as well as Eq. (C.1d), and taking the real parts, we
obtain

d(rd)  Uo d
dr  o; dr’

where Uy is a nonzero constant. Integrating Eq. (C.4) over r € (0,R)
with boundary condition #(R) = 0, we attain

Uy [Rdt
@ o adr =0. (C.5)

(C.4)

Since Uy # 0, the above integral has to be zero, yielding the neces-
sary condition, i.e., the radial gradient of basic-state vorticity, d{/dr,
changes sign somewhere.
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