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Abstract Internal gravity waves that are generated in the open ocean have a universal

frequency spectrum, called Garrett–Munk spectrum. By initializing internal waves that

satisfy the Garrett–Munk spectrum in a non-hydrostatic numerical model, we investigate

the material dispersion produced by these internal waves. Three numerical experiments are

designed: Exp.-1 uses a linearly stratified fluid, Exp.-2 has an upper mixed layer, and Exp.-

3 incorporates a circular front into the upper mixed layer. Resorting to neutrally buoyant

particles, we investigate the dispersion in terms of metrics of the relative dispersion and

finite-scale Lyapunov exponent (FSLE). Exp.-1 shows that the dispersion regime produced

by these internal waves is between ballistic and diffusive based on relative dispersion, and

is however ballistic according to FSLE. The maximum FSLE at scales of 100 m is about 5

day�1, which is comparable to that calculated using ocean drifters. Exp.-2 demonstrates

that internal waves can generate flows and material dispersion in an upper mixed layer.

However, when mixed layer eddies are present, as in Exp.-3, the dispersion in the mixed

layer is controlled by the eddies. In addition, we show that inertial oscillations do not affect

the relative dispersion, but impact FSLE at scales of inertial oscillations.

Keywords Relative dispersion � Finite-scale Lyapunov exponent (FSLE) � Garrett–Munk

spectrum � Inertial oscillation

1 Introduction

Forecasts of material dispersion in the ocean, such as the dispersion of salinity, heat,

dissolved gases, nutrients and pollutants, are important for the ocean ecosystem, economy

and human society. A natural way to study the material dispersion is the Lagrangian

method, which involves the solutions of the following equation:
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dr

dt
¼ vðtÞ ¼ uðx; tÞ ; ð1Þ

where r is the particle position vector, vðtÞ is the Lagrangian velocity along a particle’s

trajectory, and uðx; tÞ is the Eulerian velocity.

The Lagrangian metrics of dispersion can be divided into two categories, i.e., single-

particle statistics and multiple-particle (pairs or groups) statistics [19]. In this study, we

focus on the pairwise statistics, particularly on the metrics of relative dispersion and finite-

scale Lyapunov exponent (FSLE).

The relative dispersion is defined as

D2ðtÞ ¼ hðr2ðtÞ � r1ðtÞÞ2i ; ð2Þ

where r1 and r2 are the position vectors of two particles, and where h�i indicates averaging

over all particle pairs. The concept of relative dispersion was initiated by Richardson [32],

who was trying to explain the increase of relative diffusivity (1
2

dD2

dt
) in the atmosphere.

Richardson found that the relative diffusivity is scale-dependent, proportional to D4=3, and

that the relative dispersion obeys the power law of D2 / t3. The relative dispersion is

computed by averaging the separation distances between particles at fixed times; conse-

quently, the relative dispersion mixes the separations at various spatial scales, and thereby

is affected by the outliers of separation distances.

To address material dispersion at specific spatial scales, the scale-dependent Lyapunov

exponent is proposed [1, 2], called the finite-scale Lyapunov exponent (FSLE), with the

definition of

kðdÞ ¼ lnðaÞ
hsðdÞi ; ð3Þ

where hsðdÞi is the time required for two particles to separate from a distance of d to ad,

and where h�i means averaging over all particle pairs; the factor a is typically in the range

of 1\a\2 [15]. FSLE is calculated by averaging the separation times (s) at given dis-

tances (d), and thus measures dispersion at specific spatial scales (d).

Four common dispersion regimes (Table 1) are defined based on relative dispersion and

FSLE [8, 19]. In view of dimensional analysis, if the relative dispersion scales as D2 / ta,

then the FSLE scales as k / d�2=a [19].

Dispersion regimes depend on the underlying flows; a relation between the dispersion

regime and flow’s kinetic energy wavenumber spectrum, EðkÞ / k�b, has been established

(e.g., [3–5]). In terms of the spectrum’s slope (�b), two general dispersion regimes are

defined, namely the local regime and nonlocal regime [5]. In a local regime, the dispersion

of particles is dominated by flows with scales comparable to the separation distances

between particles; while in a nonlocal regime, the dispersion is controlled by flows with

Table 1 Common dispersion
regimes defined by relative dis-
persion and FSLE

Dispersion regime Relative dispersion D2ðtÞ FSLE kðdÞ

Exponential D2 / ekt k ¼ const.

Richardson D2 / t3 k / d�2=3

Ballistic D2 / t2 k / d�1

Diffusive D2 / t k / d�2
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scales much larger than the separation distances. If the slope is 1\b\3 (shallow spec-

trum), the dispersion is local, and obeys D2 / t4=ð3�bÞ or k / dðb�3Þ=2 [35]; if the slope is

b� 3 (steep spectrum), the dispersion is nonlocal, and follows D2 / ekt or k ¼ const: For

example, with a shallow spectrum EðkÞ / k�5=3, the relative dispersion is in local regime

and scales as D2 / t3, which is the Richardson regime. With a steep spectrum EðkÞ / k�3,

the relative dispersion is nonlocal, and obeys D2 / ekt, which is the exponential regime.

On the other hand, knowing the dispersion regimes produced by a flow, we can infer the

flow’s kinetic energy spectrum, EðkÞ / k�b. For instance, a local dispersion regime (e.g.,

Richardson regime) implies a shallow kinetic energy spectrum (1\b\3); while a nonlocal

dispersion regime (e.g., exponential regime) indicates a steep kinetic energy spectrum

(b� 3). Besides, the diffusive and ballistic regimes may correspond to an energy spectrum

with b� 1 at large spatial scales. When the separation distance between particles is large

enough that the Lagrangian velocities of particles become uncorrelated, the dispersion

regime is diffusive, and further is ballistic if a shear persists in the background flow

[16, 19].

Whether or not the sub-mesoscale flows are important for material transport can be

determined by the dispersion regime at sub-mesoscales [26, 35]. If the dispersion regime at

sub-mesoscales is nonlocal, the material dispersion at sub-mesoscale is controlled by

mesoscale flows; thus, the ocean models and satellite altimeters that can resolve the

mesoscales are sufficient to predict the dispersion, without the need of capturing the sub-

mesoscales. However, if the dispersion regime at sub-mesoscales is local, the material

dispersion at sub-mesoscales is controlled by the sub-mesoscale flows; hence, to accurately

predict the material dispersion, ocean models and satellite altimeters have to resolve the

sub-mesoscales.

Material dispersion has been widely investigated using drifters and floats in different

oceans, such as the North Pacific [10, 17], the Atlantic [7, 20, 22], the Southern Ocean

[37, 38], the Gulf of Mexico [21, 28], the Mediterranean Sea [14, 29, 30, 34, 35], and the

Nordic Sea [18], as well as using numerical simulations (e.g., [15, 23, 24, 26, 41]). These

dispersion studies are conducted in ocean currents, various-scale eddies, Langmuir cir-

culations, thermal convections, etc. However, the dispersion by pure oceanic internal

waves, to our knowledge, has not been investigated, and is the purpose of our study.

The oceanic internal waves in this study are inertia-internal gravity waves that have

frequencies bounded by the local inertial frequency and buoyancy frequency. Internal

waves observed in the open ocean have a universal spectrum, namely the Garrett–Munk

frequency spectrum [12]. These internal waves have a horizontal wavelength of several

kilometers, wave amplitude of tens of meters, and wave period from tens of minutes to

hours (e.g., [13, 25]). However, internal waves that satisfy the Garrett–Munk spectrum are

difficult to occur in ocean models. We are not aware of any models that spontaneously

generate internal waves satisfying the Garrett–Munk spectrum; thus, we need to initialize

the oceanic internal waves that satisfy the Garrett–Munk spectrum. Once initialized, the

internal waves evolve without any wave sources; meanwhile, particles are released into the

internal waves for dispersion measurement. This study represents a scenario that internal

waves with Garrett–Munk spectrum propagate from an open ocean into a region away from

any wave sources, and gradually decay in this region. With these internal waves we explore

whether or not internal waves can produce material dispersion, and whether the internal

waves can cause material dispersion within an upper mixed layer. Also, the dispersion

under both internal waves and mixed layer eddies is investigated.
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2 Method

2.1 Numerical model

Our numerical experiments are conducted with NEK5000, which solves Navier–Stokes

equations using the spectral element method (e.g., [11, 27]). NEK5000 has the high-order

accuracy and geometry flexibility, and has been used to study geophysical fluid dynamics,

including submesoscale instabilities (e.g., [26]), chaotic advection inside an ocean eddy

[31, 33], hydrodynamic instabilities of a geophysical vortex [39] and spiral inertial waves

[40].

NEK5000 integrates the dimensionless Boussinesq equations:

ou

ot
þ ðu � rÞu ¼ �rp� 1

Ro
ẑ � u � 1

Fr2
q0ẑ þ 1

Re
r2u; ð4aÞ

r � u ¼ 0 ; ð4bÞ

oq0

ot
þ ðu � rÞq0 ¼ 1

Pe
r2q0 : ð4cÞ

The Rossby number is given by Ro ¼ U=ðfLÞ, where U and L are the typical horizontal

velocity and horizontal wavelength of internal waves. f ¼ 2X is the Coriolis parameter,

with X being the angular velocity of the background rotation. The Froude number is

defined as Fr ¼ U=NH, where N is the buoyancy frequency and H is the typical vertical

wavelength. The Reynolds number is given by Re ¼ UL=m, where m is the kinematic

viscosity. Pe ¼ UL=j is the Péclet number and j is the diffusivity of density. u ¼ ðu; v;wÞ
is the velocity in the x, y, z directions, p is the dynamic pressure, and q0 is the density

anomaly. ẑ is the unit vector in the vertical direction, and operator r ¼ ð o
ox
; o
oy
; o
oz
Þ.

In addition to Eq. (4), NEK5000 integrates the advection-diffusion Eq. (5) for the

passive tracer:

oC

ot
þ ðu � rÞC ¼ 1

Pe
r2C ; ð5Þ

and the Lagrangian advection Eq. (6) for passive, neutrally-buoyant particles:

dx

dt
¼ u ; ð6Þ

where x is the particle position.

The numerical domain (Fig. 1) is a cylinder with diameter Dc ¼ 52 km and height

Hc ¼ 2:6 km; the domain size is large enough to contain internal waves of various scales.

The domain is discretized into K ¼ 2560 quadrilateral elements; on each element, the

solutions are approximated by Legendre polynomials with order Np ¼ 17, which generates

about KðNp þ 1Þ3 ¼ 14; 929; 920 grid points. The grid spacing is uneven, ranging from

0.39 to 459 m. The boundary conditions are free-slip on the top and bottom, and no-slip on

the sidewall; no flux is across boundaries. The numerical computation is performed with

168 processors of a recent computer cluster; a typical simulation costs about 3 weeks.
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2.2 Initialization of Garrett–Munk internal waves

The Garrett–Munk spectrum is given by Munk [25]

Eðx; jÞ ¼ 2b2fN0NEGM

p
x2 þ f 2

x3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � f 2
p

ðj2 þ j2�Þ
�1

P1
j¼1ðj2 þ j2�Þ

�1
; ð7Þ

where x is the internal wave frequency and j is the vertical mode number; other parameters

are listed in Table 2.

The method of initializing Garrett–Munk internal waves is proposed by Sun and Kunze

[36]; its procedure is as follows: Treat the spectrum in Eq. (7) as a probability density

function, and then use the Monte-Carlo method to find random sampling schemes for

internal wave frequency x, vertical mode number j, and wave amplitude. For example, a

random sampling scheme for frequency x can be constructed using the term of ðx2 þ
f 2Þ=ðx3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � f 2
p

Þ in Eq. (7); that is

x2 þ f 2

x3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � f 2
p ¼ ð1 þ f 2

x2
Þ 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � f 2
p : ð8Þ

Integrate and normalize the term of 1

x
ffiffiffiffiffiffiffiffiffiffi

x2�f 2
p in Eq. (8), yielding

Fig. 1 The numerical domain with 2560 quadrilateral elements (vertically stretched image)
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Rx
f

1

x
ffiffiffiffiffiffiffiffiffiffi

x2�f 2
p dx

R N0

f
1

x
ffiffiffiffiffiffiffiffiffiffi

x2�f 2
p dx

¼ arccosðf=xÞ
arccosðf=N0Þ

¼ randðeÞ ; ð9Þ

where rand(e) represents a random number in [0, 1]. Inverting Eq. (9) for x, we obtain the

random sampling scheme for the wave frequency

x ¼ f

cos½arccosðf=N0ÞrandðeÞ� : ð10Þ

Similarly, we can find random sampling schemes for the vertical mode number j, and wave

amplitude. Using these sampling schemes, we sample 10,000 wave frequencies x, vertical

mode numbers j, and wave amplitudes (max. velocity of waves = 0.2 m/s). With the wave

frequency x and vertical mode number j, we obtain the vertical wavenumber Kz using the

relation of

Kz ¼
pj
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2 � x2

N0
2 � x2

s

: ð11Þ

Then we determine the horizontal wavenumber in terms of the dispersion relation of

inertia-inertial gravity waves; the direction of horizontal wave vector h ¼ arctanðKy=KxÞ is

randomly chosen from ½0; 2p� to ensure the horizontal isotropy, where ðKx;KyÞ are the

horizontal wavenumber in (x, y) direction. Now we have constructed 10,000 waves; then

we sum them up to obtain the final internal waves that satisfy the Garrett–Munk spectrum.

For more details on initializing Garrett–Munk internal waves, please refer to the work by

Sun and Kunze [36].

As shown in Fig. 2, the initialized internal waves have a frequency spectrum with a

slope of �2 between f\x\N, which is consistent with the Garrett–Munk spectrum. Also,

the spectrum of initialized internal waves captures other features of the Garrett–Munk

spectrum, such as a quick change in the near-inertial frequency (x	 f ), an energy peak at

the inertial frequency f, and an energy cutoff at the buoyancy frequency N [13].

Table 2 Parameters used in the Garrett–Munk spectrum

f ¼ 7:3 � 10�5 rad s-1 Coriolis frequency at 30� N

N0 ¼ 50f ¼ 3:7 � 10�3 rad s-1 Reference buoyancy frequency

NðzÞ ¼ N0e
z=b Depth-dependent buoyancy frequency

b = 1300 m Stratification depth scale

EGM ¼ 6:3 � 10�5 Dimensionless spectral energy level

j� ¼ 3 Peak vertical mode number

Kzc ¼ 1
3Ricj�bEGM

Cutoff vertical wavenumber

Ric ¼ N2= ou
oz

� �2

¼ 2
Richardson number associated with Kzc
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3 Analysis of material dispersion

3.1 Description of experiments

We design three numerical experiments that are distinguished by the initial density field:

Exp.-1 has a linear density stratification (Fig. 3b); Exp.-2 possesses an upper mixed layer

of depth of 140 m, and a pycnocline below (Fig. 3c); Exp.-3 incorporates a circular front

in the upper mixed layer, which will drive a cyclonic mixed layer eddy. Exp.-1 inves-

tigates whether or not pure internal waves can produce dispersion. Exp.-2 explores

whether the internal waves can cause dispersion inside an upper mixed layer. Exp.-3

examines the dispersion under both internal waves and mixed layer eddies. All three

experiments have the same parameters of Rossby number Ro ¼ 2, Froude number

Fr ¼ 0:5, Reynolds number Re ¼ 105 and Péclet number Pe ¼ 7 � 105, and the same

initial internal waves; particularly in Exp.-2 and Exp.-3, the mixed layer is initially

motionless.

Internal waves are visualized by density isosurfaces shown in Fig. 4. The vertical

oscillation of density isosurface at the mid-depth has a similar amplitude in all three

experiments; however, the oscillation in the pycnocline of Exp.-2 and 3 is weaker than that

in the sub-surface of Exp.-1. The weaker oscillation is due to the larger density gradient in

the pycnocline, the buoyancy frequency of which is about twice of that in the sub-surface

of Exp.-1 according to Fig. 3a; a larger density gradient suppresses the vertical motions

more, leading to weaker oscillations.

Material dispersion by internal waves is investigated based on two metrics, which

are the relative dispersion and FSLE. We release particles at three depths: D1 ¼ 65 m

inside the mixed layer, D2 ¼ 208 m inside the pycnocline layer, and D3 ¼ 1300 m at

the mid-depth (Fig. 5a); in Exp.-1, depths D1 and D2 represent the sub-surface and

upper layer, for Exp.-1 does not have a mixed layer and pycnocline. At each depth,

particles are divided into five groups (Fig. 5b), and are released at five different places;

particularly in Exp.-3, the central particle group A released in the mixed layer is right

Fig. 2 The frequency spectrum of the initialized internal waves
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inside the circular front (cf. Fig. 3d). The initial separation distance between two par-

ticles is 117 m.

3.2 Exp.-1: linear density stratification

Particles are advected by the 3D velocity of internal waves with a time step of 2 s; the

advection terminates before particles reach the domain boundary (Fig. 6).

3.2.1 Relative dispersion analysis

At the mid-depth, the relative dispersion computed from each particle group is almost the

same to each other (Fig. 7a); at other two depths, the relative dispersion from each group

also nearly coincides with each other. The nearly same characteristics of relative dispersion

implies that the dispersion in Exp.-1 does not depend on where particles are released. In

addition, the mesh grid spacing (resolution) varies with particle groups, but the relative

dispersion of all groups is nearly the same, implying the current spatial resolution do not

affect the dispersion.

The average relative dispersion shown in Fig. 7a well represents the dispersion of every

particle group; thus, we adopt the average relative dispersion in analyzing Exp.-1.

Fig. 3 a Vertical profiles of the initial density field in Exp.-1 and Exp.-2. The 3D distribution of initial
density field in b Exp.-1 with a linear stratification, c Exp.-2 with an upper mixed layer, and d Exp.-3 with a
circular front inside the upper mixed layer
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According to Fig. 7b, c, the average relative dispersion at three depths behaves similar:

before 0.1 days, it grows exponentially in time, i.e., D2 / e12t (cf. Fig. 7b); then, it transits

to a regime scaling as D2 / t1:5 (cf. Fig. 7c), which is between the ballistic and diffusive

Fig. 4 Density isosurface in a Exp.-1, b Exp.-2 and c Exp.-3 after one day. In each figure, the lower surface
locates at the mid-depth; the upper one is inside the sub-surface (Exp.-1) or the pycnocline (Exps.-2, 3)
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regime; about one day later, the relative dispersion still increases but exhibits oscillations;

after 5 days, the relative dispersion again scales as D2 / t1:5.

3.2.2 FSLE analysis

The FSLE calculated from each particle group is similar to each other (Fig. 8a), and so is

the average FSLE (Fig. 8b). As indicated by FSLE, the dispersion regime is ballistic

(k / d�1) at spatial scales smaller than *1000 m and larger than *3000 m; between the

two scales, the dispersion regime (k / d�1:5) is between ballistic and diffusive.

Fig. 5 a Particles released at three depths. b Five particle groups distributed at each depth; the circle
represents the domain boundary
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3.3 Exp.-2: upper mixed layer

In Exp.-2, the upper mixed layer (cf. Fig. 3c) is initially motionless; internal waves are

initialized below the mixed layer. As internal waves continuously hit the base of the mixed

layer, weak flows are generated within the mixed layer.

As shown in Fig. 9, the dispersion of particles changes with depth. At the mid-depth,

particles have the largest dispersion (Fig. 9a); at the pycnocline (Fig. 9b) and mixed layer

(Fig. 9c), each particle group remains compact, dispersing much less than the groups at

mid-depth.

3.3.1 Relative dispersion analysis

At each depth, the relative dispersion calculated from each particle group is almost

identical to each other; thus, the average relative dispersion is used for analysis. As shown

Fig. 6 Exp.-1: Positions of particles at 28.3 days after the release at a mid-depth (1300 m), b upper layer
(208 m) and c sub-surface (65 m) in a 2D view
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in Fig. 10, the average relative dispersion changes with depth, implying that the dispersion

in Exp.-2 is depth-dependent.

At the mid-depth, the relative dispersion is exponential (D2 / e12t) when time is less

than 0.1 days (Fig. 10a); then the dispersion transits to the regime of D2 / t1:5; about 1 day

later, the relative dispersion shows oscillations; after 5 days, the relative dispersion scales

as D2 / t1:4 that is a regime between ballistic and diffusive.

At the pycnocline, the relative dispersion grows exponentially (D2 / e0:3t); after 3 days,

the relative dispersion gradually transits to a regime of D2 / t1:7 (cf. Fig. 10b) that is close

to the ballistic regime. At the mixed layer, the relative dispersion is the smallest, and fits an

exponential regime of D2 / e0:06t (cf. Fig. 10a), which regime lasts till the end of the

experiment.

3.3.2 FSLE analysis

Since at each depth the FSLE calculated from each particle group is nearly the same, the

averaged FSLE is used for analysis. According to Fig. 10c, the FSLE curves at three depths

span different spatial scales. The FSLE curve at the mid-depth spans the longest, whereas

Fig. 7 Exp.-1: a Relative dispersion calculated from each particle group released at the mid-depth; the thick
black curve represents the relative dispersion averaged over all particle groups released at the mid-depth.
Average relative dispersion at three depths in b semi-log frame and c log–log frame. [The exponential fit and

power law are also displayed; the unit of growth rate of D2 is (day�1)]
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the curve at the mixed layer spans the shortest. This result is consistent with the relative

dispersion shown in Fig. 10a, b. The relative dispersion at the mid-depth is the largest,

indicating particles separate to larger distances; thus their FSLE curve spans longer, and

has a larger magnitude.

At the mid-depth, the FSLE has a slope of -1 at spatial scales smaller than *1000 m

and larger than *3000 m, indicating the ballistic dispersion regime; between the two

scales, the FSLE has a slope of -1.5, meaning a regime between ballistic and diffusive (cf.

Fig. 10c). At the pycnocline and mixed layer, the magnitude of FSLE is one order of

magnitude less than that at the mid-depth. The FSLE at pycnocline has a slope of -0.85,

close to the ballistic dispersion regime.

Fig. 8 Exp.-1: a FSLE calculated from each particle group released at the mid-depth; b FSLE at three
depths, averaged over all the particle groups released at the same depth
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3.4 Exp.-3: upper mixed layer with a circular front

In Exp.-3, a circular front (cf. Fig. 3d) in the mixed layer drives a cyclonic eddy with a

diameter of about 15 km (Fig. 11a); this eddy later falls apart to smaller eddies due to

baroclinic instabilities (Fig. 11c, d). These smaller eddies spread out, changing dispersion

nearby them.

Particles released at the pycnocline and mixed layer have very different dispersion. In

the mixed layer (Fig. 12c), for example, group A is released right inside the mixed layer

eddy (cf. Fig. 11a); when this eddy breaks, particles of group A leak out of the eddy and

spread widely; some particles are carried away by the reformed eddies to a long excursion.

Groups B and C remain compact, whereas groups D and E are stretched into filaments due

to the eddies stirring.

Fig. 9 Exp.-2: Positions of particles at 28.3 days after the release at a mid-depth (1300 m), b pycnocline
(208 m) and c mixed layer (65 m) in 2D view
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3.4.1 Relative dispersion analysis

At the pycnocline (Fig. 13c, d) and mixed layer (Fig. 13e, f), the relative dispersion

changes with particle groups due to the biased distribution of mixed layer eddies. The

dispersion of particles that are inside or nearby eddies is greatly enhanced. For instance,

group A that is released right inside the eddy has the largest dispersion in the mixed layer

and pycnocline. Also, the dispersion of groups D and E in the mixed layer suddenly

increases around day 13 (cf. Fig. 13e, f), as eddies are passing by these groups. However at

the mid-depth, all particle groups have an almost identical relative dispersion (Fig. 13a, b),

which implies that the mixed layer eddies do not affect the dispersion at the mid-depth in

Exp.-3.

Initially, particle groups at all depths have exponential dispersion regimes. Later, the

dispersion at mid-depth transits to a regime between ballistic and diffusive. At the pycn-

ocline and mixed layer, the relative dispersion depends on particle groups; for example, at

the mixed layer (cf. Fig. 13f), the relative dispersion of groups A, D and E belongs to a

regime of D2 / t5:2, and increases faster than that in Richardson regime, for these groups

either are released inside the mixed layer eddy (i.e., group A) or are near the eddies (i.e.,

Fig. 10 Exp.-2: Relative dispersion in a a semi-log frame and b log–log frame; c FSLE at three depths.
Every curve represents the average over all the particle groups released at the same depth. [The unit of

growth rate of D2 is (day�1).]
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groups D and E); nevertheless, the relative dispersion of groups B and C still remains in the

exponential regime (D2 / e0:06t) with a very small growth rate (cf. Fig. 13e), for groups B

and C stay away from the eddies.

3.4.2 FSLE analysis

At the mid-depth (Fig. 14a), the FSLE from different particle groups is almost identical,

confirming that mixed layer eddies hardly affect the dispersion at the mid-depth in Exp.-3.

At spatial scales smaller than *1000 m and larger than *3000 m, the FSLE obeys

k / d�1, indicating the ballistic dispersion regime; between the two scales, the FSLE

Fig. 11 Exp.-3: Density field on the surface at day a 4.2, b 8.4, c 13.8 and d 25.4
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follows d�1:5, indicating a regime between ballistic and diffusive.

At the pycnocline and mixed layer (Fig. 14b, c), the FSLE computed from group A

stands out from other groups, with a larger magnitude and a wider spatial span. At small

spatial scales, the FSLE curves of groups B–E nearly coincide with each other. However at

larger scales, the FSLE curves of groups D and E diverge due to the passage of mixed layer

eddies.

4 Discussion

In all three experiments, particles released at the mid-depth have similar dispersion: Based

on the relative dispersion metric, the dispersion is exponential (D2 / e12t) at the beginning;

after about 0.1 days, it transits to a regime (D2 / t1:5) between ballistic and diffusive;

around 5 days, the dispersion resume to the regime of D2 / t1:5. In terms of FSLE, at

Fig. 12 Exp.-3: Positions of particles after 28.3 days at a mid-depth (1300 m), b pycnocline (208 m) and c
mixed layer (65 m) in a 2D view
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spatial scales smaller than *1000 m and larger than *3000 m, the k / d�1 indicates the

ballistic dispersion regime, while between the two spatial scales, the k / d�1:5 indicates a

regime between ballistic and diffusive.

Exp.-1 has a linear density stratification and a depth-independent buoyancy frequency,

which leads to the dispersion being independent on depth (cf. Figs. 7c, 8b). By contrast, the

buoyancy frequency in Exp.-2 changes with depth, and so does the dispersion (cf. Fig. 10).

Fig. 13 Exp.-3: Relative dispersion calculated from each particle group released at the a, b mid-depth
(1300 m), c, d pycnocline (208 m) and e, f mixed layer (65 m). Left column: semi-log frame; right column:

log–log frame. [The unit of growth rate of D2 is (day�1).]
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The buoyancy frequency in the pycnocline is larger than that at the mid-depth, suppressing

flows in the pycnocline and causing smaller dispersion. The above results imply that

material dispersion depends on the fluid’s buoyancy frequency.

Internal waves can affect material dispersion in an upper mixed layer. For example,

dispersion in the mixed layer of Exp.-2 (cf. Fig. 9c) is produced by flows that are generated

by the below internal waves; since the generated flow is weak, the associated dispersion is

small (cf. Fig. 10).

When mixed layer eddies are present, as in Exp.-3, the eddies dominate dispersion in the

mixed layer (cf. Fig. 13e, f). However, at the mid-depth of Exp.-3, the dispersion is not

affected by the mixed layer eddies (cf. Figs. 13b, 14a), for these eddies only penetrate to a

depth about 800 m, hardly affecting the dispersion at mid-depth (1300 m).

In the long-term dispersion, say 10 days, the relative dispersion produced by internal

waves is only a couple of kilometers in our experiments (cf. Fig. 7); however, the relative

dispersion in the ocean is up to hundreds of kilometers in 10 days, particularly near the

surface [28, 35]. Because the ocean contains many processes that contribute to material

dispersion, such as wind-driven currents, thermal convections, tidal flows and surface

gravity waves; as one of these processes, internal waves contribute significantly to the

dispersion only at their own temporal and spatial scales.

Fig. 14 Exp.-3: FSLE calculated from each particle group released at the a mid-depth (1300 m), b
pycnocline (208 m) and c mixed layer (65 m)
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In our study, the maximum FSLE at scales of *100 m is about 5 day-1 (cf. Fig. 8b),

which is comparable to that found in real oceans, such as the Gulf of Mexico [21, 28], the

Atlantic Ocean [7], the Mediterranean Sea [14, 34, 35] and Southern Ocean [38]. There-

fore, the dispersion by internal waves needs to be counted to predict material dispersion at

scales of *100 m in the ocean.

The restoring forces of internal waves in this study are the Coriolis force and buoyancy;

therefore, particles trajectories by these internal waves always contains the part from

inertial oscillations, which are generated by the Coriolis force. The scale of inertial

oscillations is given by V/f, where V is particle speed and f is the local inertial frequency

[9]; the inertial oscillation scale in our experiments is less than 1 km. A natural question is:

Do inertial oscillations affect the relative dispersion and FSLE? Let’s use Exp.-1 to

examine this effect. We remove inertial oscillations using a low-pass filter with the cutoff

Fig. 15 a Relative dispersion b FSLE at the mid-depth of Exp.-1. Each curve is the average over five
particle groups. Low-pass data removes inertial oscillations
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frequency of (2.5 days)-1. After removing inertial oscillations, the relative dispersion

remains almost the same (Fig. 15a); however, the FSLE decreases remarkably at scales

comparable to that of inertial oscillations (Fig. 15b). Therefore inertial oscillations do not

affect the relative dispersion, but impact FSLE at scales of inertial oscillations [6].

Why do inertial oscillations have different effects on the relative dispersion and FSLE?

Inertial oscillations create circular particle trajectories; theoretically after an inertial period,

particles return to their origins, producing zero relative dispersion. Thus inertial oscilla-

tions do not contribute to the relative dispersion. For the FSLE, once two particles are

separated to a specific distance by inertial oscillations, the dispersion is counted by FSLE;

hence FSLE is subject to inertial oscillations. Nevertheless as shown in Fig. 15b, at larger

scales ([5 km) the FSLE from low-pass data is nearly the same with that from raw data,

indicating that inertial oscillations do not affect FSLE at scales larger than that of inertial

oscillations. In fact, particle separations by inertial oscillations are around the scales of

inertial oscillations; thus at spatial scales much larger than scales of inertial oscillations,

the dispersion by inertial oscillations is negligible, and FSLE at these spatial scales

becomes robust to inertial oscillations.

When particles do inertial oscillations with different radii, the separation distance

between particles may oscillate with time, creating oscillations in relative dispersion (e.g.,

Fig. 7a). Removing inertial oscillations can remove these dispersion oscillations,

smoothing the curve of relative dispersion (Fig. 15a).

Our study confirms that the dispersion regime identified by relative dispersion is not

necessarily the same with that identified by FSLE (e.g., [19, 20, 38]. The difference in

identifying dispersion regimes is rooted in the definitions of relative dispersion and FSLE:

Relative dispersion uses temporal scales to identify regimes, while FSLE uses spatial

scales. Due to the distinction in definitions, different dispersion metrics may react dis-

tinctly to some dispersion processes, including inertial oscillations. For time-based dis-

persion metrics (e.g., relative dispersion), inertial oscillations may be not important, but for

space-based metrics (e.g., FSLE), inertial oscillations do matter, particularly at scales of

inertial oscillations.

5 Conclusion

Using numerical simulations of oceanic internal waves that are initialized with the Garrett–

Munk spectrum, we investigate the material dispersion produced by these internal waves.

The dispersion is examined by two metrics, the relative dispersion and FSLE. In terms of

relative dispersion, the dispersion is exponential at the beginning, and transits to a regime

(D2 / t1:5) between ballistic and diffusive. In terms of FSLE, the ballistic dispersion

regime dominates; the maximum FSLE at scales of 100 m is about 5 day-1, which is

comparable to that found by ocean observations. Internal waves can generate flows in an

upper mixed layer, leading to material dispersion in the mixed layer; when mixed layer

eddies are present, the dispersion is controlled by the eddies. In addition, we show that

inertial oscillations do not affect the relative dispersion, but impact FSLE at scales of

inertial oscillations.

This study on material dispersion by internal waves is preliminary, due to huge com-

putational challenges of generating internal waves that satisfy the Garrett–Munk spectrum

in a numerical model. But it is original since most of the dispersion studies are conducted

using models that contain only coherent structures, such as eddies of various sorts.
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35. Schroeder K, Haza AC, Griffa A, Özgökmen TM, Poulain PM, Gerin R, Rixen M (2011) Relative
dispersion in the Liguro-Provenal basin: from sub-mesoscale to mesoscale. Deep Sea Res Part I
58(3):209–228

36. Sun H, Kunze E (1999) Internal wave-wave interactions. Part I: the role of internal wave vertical
divergence. J Phys Oceanogr 29(11):2886–2904

37. Trani M, Falco P, Zambianchi E, Sallée JB (2014) Aspects of the Antarctic Circumpolar Current
dynamics investigated with drifter data. Prog Oceanogr 125:1–15

38. van Sebille E, Waterman S, Barthel A, Lumpkin R, Keating SR, Fogwill C, Turney C (2015) Pairwise
surface drifter separation in the western Pacific sector of the Southern Ocean. J Geophys Res
120:6769–6781

39. Wang P, Özgökmen TM (2015) How do hydrodynamic instabilities affect 3D transport in geophysical
vortices? Ocean Model 87:48–66
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